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LElTER TO THE EDITOR 

Fl’uctuation slow-down of the death of Brownian particles in the 
case of movable traps 

A M Berezhkovskii, Yu A Makhnovskii and R A Suris 
Karpov Institute of Physical Chemistry, Ulice Obukha, 103064 Moscow, K-64, USSR 

Received 3 April 1989 

Abstract. The influence of trap diffusion on the fluctuation slow-down of death of Brownian 
particles, discovered earlier in the case of stationary traps, is analysed. It  is shown that 
fluctuation slow-down also takes place with movable traps if the diffusion is slow enough. 

Normally, in describing diffusion-controlled reactions of the type A +  B + B (death of 
particles (A) on traps (B))  one uses the approach which was first suggested by 
von Smolukhovsky [I]. According to this approach the death of particles on each trap 
takes place independent of the others. This approach is accurate when the particles 
are at rest and the reagents draw closer at the expense of trap diffusion. If the particles 
are movable then it gives only an approximate solution of the problem since it neglects 
many-body effects present in this case. In recent years much effort has been devoted 
to evolving a rigorous theory of such processes where many-body effects could be 
taken into account (see the recently issued monographs [2,3] and reviews [4-61 as 
well as the papers cited therein). 

Inadequacy of the traditional approach manifests itself most vividly with stationary 
traps in the effect of the so-called fluctuation slow-down of the death of particles. As 
is shown in [7-lo], for asymptotically large times the probability of particle survival 
is appreciably higher than that predicted by the conventional expression. The effect 
is due to the survival of particles found in those regions of space which are .free from 
traps owing to fluctuations in their distribution. The larger the size of such a fluctuation 
cavity the longer the particle lives in it, since its death outside the cavity is preceded 
by a prolonged walk over the region free from traps. On the other hand, the larger 
the cavities the smaller the probability of their presence. I t  is these two factors that 
determine the nature of the fluctuation slow-down. As a result, the dependence of 
probability of particle survival on the time takes the form [7-101 

where n is the concentration of traps, ud = vd’*/T(1 + d/2)  is the volume of the 
d-dimensional sphere of the unit radius, DA is the coefficient of particle diffusion and 
Pd is the square of the first zero of the Bessel function of the first kind of the order 
$( d - 2). The particles, according to the expression ( l ) ,  die appreciably more slowly 
than predicted by the conventional expression 

(2) ptr( 2 )  = exp[-nv,d(d -2)b“-’D~t]  

where b is the trap radius. 
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The problem of the influence of trap motion on the fluctuation slow-down of particle 
death was considered by us in detail in [ l l ]  for the spaces with dimensions d = 1 ,  2 ,  
3. In the present letter we shall discuss the case of spaces of arbitrary dimensions 
d 3 3, using the method suggested in [ l l ] .  

It is clear that the particle will not die during the time t if it spends all this time 
inside a region free from traps. Let us introduce a d-dimensional sphere of arbitrary 
radius R, surrounding the starting point of a particle and write down the evident 
inequality 

P ( t ) >  Q,(R)Qz(R, t )Q,(R,  t ) .  (3)  

Q , ( R )  =exp(-nvdRd) (4) 

Here 

is the probability of trap absence inside a sphere of radius R at the initial instant of 
time; Q2(R, t ) ,  defined by 

Q,(R, t )  = exp[-nudd(d -2)Rd-2DBt]  ( 5 )  

is the probability of keeping a sphere of the radius R free from the traps during the 
time t ;  DB is the coefficient of trap diffusion; Q,(R, t ) ,  defined by 

is the probability of a particle staying during the time t inside a sphere of radius R 
surrounding its starting point. The estimation (6) of the probability Q,(R, t )  is true 
for times which satisfy the inequality DAt >> R. 

Substituting the expressions (4)-(6) in the inequality (3) we obtain 

P( t )  > eXp{ -[ + nUdd (d - 2)Rd-’D,t + PdDAt/ R 2 ] } .  (7) 

Up to now, no restrictions have been imposed on the radius of the sphere R. Now 
we shall optimise our estimation choosing R = R, so that the right-hand side of the 
inequality (7) is maximal at a certain instant of time t .  Substituting the value R,, 
obtained in this way, into the inequality (7) we shall obtain the estimate we are 
interested in of the probability of particle survival: 

where 
2pd 2 / d  ~ 2 / d  d + 2  A 

t ,  = d2(d - 2 )  (’ -$ )d”(  d ( d  - 2 ) 2 )  D r 2 / d ( n u d ) ’ / d ’  

This estimate is of a special interest if it predicts a higher probability of particle survival 
than the conventional expression having the form 

ptr(t) =eXp[-nUdd(d - 2 ) b d - 2 ( D ~ +  D B ) t ] .  ( 9 )  

With D, = 0 this expression passes into the expression ( 2 ) .  
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Comparison of expressions (8) and (9) shows that the fluctuation slow-down of 
particle death takes place both with DB = 0 and when DB # 0, if the trap diffusion 
takes place slowly enough 

where p = nudbd is the volume fraction of traps, which we take to be small, p << 1. With 
times which satisfy the condition 

( d + Z ) / d  

<L( d - 2  d ( d - 2 ) *  )”“EA) P‘d-2’ ld  

the probability of particle survival is described by the expression ( 1 ) .  Here T is the 
dimensionless time resulting from the reference of time t to the characteristic time 
1/ nudd ( d  - 2 )  b d - ’ ( D A  + DB), during which the probability of particle survival 
decreases by e times, according to the conventional formula ( 2 ) .  

With stationary traps, DB = 0, the expression ( 1 )  is the asymptotic limit of the 
survival probability P ( t )  as t + m .  If DE f O  the expression ( 1 )  is the intermediate 
asymptotic limit. With the times determined by the inequality 

T>L( 2Pd ) 2 ’ d ( % )  ( d + 2 ) / d  P ( d - 2 ) / d  

d - 2  d ( d - 2 ) ’  

it passes into the expression having the form 

This formula describes the fluctuation slow-down of particle death when t + 00 in the 
case of movable traps. We shall emphasise that although in the expression (13 )  the 
exponent is linear with time, as in the conventional expression (9), this expression, 
however, describes a slower particle death than that predicted by the conventional 
formula due to the small value of the parameter 

(see the inequality (10) ) .  
Note that similar estimates of the trap diffusion influence on the fluctuation 

slow-down of particle death with t -* 00 were made in [12, 131. The estimates which 
were presented in [12, 131 of the particle survival probability with DB # 0 in the case 
d 2 3 have the form 

P (  t)  > exp( - A n t )  (15 )  

where A is a constant. Note the erroneous dependence of the coefficient with t in the 
exponent on the concentration of traps in this expression. According to (15 )  it is 
proportional to n whereas according to (8) it is proportional to n2’d. 
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Let us now discuss the varying role of fluctuation slow-down in spaces of different 
dimensions. In accordance with the conventional expression (9) ,  the survival probabil- 
ity depends on the mobility of particles and traps only via the sum of their coefficients 
of diffusion D = DA + DE but not on each of these values taken separately. The formula 
(13) shows that this is not so. According to the inequality ( lo) ,  the larger the space 
dimensionality the narrower the interval of values of the relationship DB/D within 
which the fluctuation slow-down occurs. It will be recalled that with d = 1, 2 
the fluctuation slow-down takes place with an arbitrary value of the relationship 
D B / D < l  [ l l] .  

Furthermore, an increase in the space dimensionality results in restricting the time 
interval where an intermediate asymptotic limit ( 1 )  is true. This happens at the expense 
of a shift in its lower boundary towards larger values of T, while the upper limit of 
the interval with d >> 1 does not depend on the space dimensionality. Indeed, with 
d >> 1,  Pd = d2/4 [14] and the inequality ( 1 1 )  takes the form 

D A  <7<-p.  
d 1  -- 
2 (4p)d’2 D E  

Thus, with an increase in the space dimensionality there is an extension of the 
interval where the conventional expression of particle survival probability (9) is valid. 
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